Short communication

Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue

Beatriz Raneraa,1, Jaber Lyahyai,1, Antonio Romerob,a, Francisco José Vázquezb,a, Ana Rosa Remachaa, María Luisa Bernalc, Pilar Zaragozaa, Clementina Rodellar a, Inmaculada Martín-Burriela

a Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, Spain
b Hospital Veterinario, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
c Departamento de Farmacología y Fisiología, Facultad de Medicina, Universidad de Zaragoza, 50009, Zaragoza, Spain

Article info
Article history:
Received 22 November 2010
Received in revised form 17 June 2011
Accepted 27 June 2011

Keywords:
Horse
MSC
Cell surface markers
Immunophenotype
Gene expression

Abstract
Bone marrow and adipose tissue are the two main sources of mesenchymal stem cell (MSC). The aim of this work was to analyse the immunophenotype of 7 surface markers and the expression of a panel of 13 genes coding for cell surface markers in equine bone marrow and adipose tissue-derived MSCs obtained from 9 horses at third passage. The tri-lineage differentiation was confirmed by specific staining. Equine MSCs from both sources were positive for the MSC markers CD29 and CD90, while were negative for CD44, CD73, CD105, CD45 and CD34. The gene expression of these molecules was also evaluated by reverse transcriptase real-time quantitative PCR along with the expression of 5 other MSC markers. Both populations of cells expressed CD13, CD29, CD44, CD49d, CD73, CD90, CD105, CD106, CD146 and CD166 transcripts. Significant differences in gene expression levels between BM- and AT-MSCs were observed for CD44, CD90, CD29 and CD34. Both cell types were negative for CD45 and CD31. The surface antigens tested revealed a similar phenotypic profile between horse and human MSCs, although specific differences in some surface antigens were noticed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The use of stem cell in therapy and tissue engineering in equine medicine is relatively new, but it is an exciting research field that is beginning to rapidly expand (Smith et al., 2003; Crovace et al., 2007; Richardson et al., 2007). Due to similarities in size, load and types of joint injuries suffered by horses and humans, a U.S. Food and Drug Administration (FDA) report concluded that the horse was the most appropriate model animal for testing the clinical effects of mesenchymal stem cell (MSC)-based therapies for certain types of injuries in humans, especially joint injuries (Cellular, Tissue and Gene Therapies Advisory Committee, 2005). In addition, the economic and welfare costs of performance-related injuries in horses have stimulated interest in stem cell-based regenerative medical techniques to accelerate and improve healing (Paris and Stout, 2010). Therefore, the horse can be considered not only as an animal model for human injuries and osteoarthritis (Goodrich et al., 2007) but also as a patient itself.

Bone marrow and adipose tissue are the main sources of MSCs for the treatment of equine orthopaedics (Smith et al., 2003; Koch et al., 2008), although alternative sources for MSC isolation, such as umbilical cord or peripheral blood,
have been described (Koerner et al., 2006; Hoynowski et al., 2007). Recent studies have demonstrated that MSCs are very heterogeneous; there are subpopulations of cells that have different shapes and varying proliferation and differentiation abilities (Zhang and Chan, 2010). Clear characterisation of MSCs is extremely relevant for their identification before use in therapy (Tarnok et al., 2010).

Because MSCs are becoming tools utilised in equine regenerative medicine, it is important to define equine-specific markers to precisely characterise this cell population (Koch et al., 2009). Mesenchymal stem cells and other stem cell lineages can be identified by the expression of specific “stemness” marker proteins and other stem cell epitopes that are not expressed by somatic cells. A unique MSC marker has not yet been identified, in contrast to the antigen CD34 that is used for positive immunoselection of haematopoietic stem cells (Tuan et al., 2003). The different subpopulations of adipose tissue are difficult to characterise due to the rapid nature of adipose stromal vascular cells to adopt a mesenchymal phenotype in vitro and the complex organisation of stromal cells surrounding the small vessels (Zimmerlin et al., 2010). Moreover, it has been proposed that the expression level of stem cell markers is also related to the method of cell isolation (Deans and Moseley, 2000; Panchision et al., 2007; Martinez-Lorenzo et al., 2009). Human MSCs are the best characterised, and the International Society for Cellular Therapy has established a minimal criteria for defining this type of cells (Dominici et al., 2006). First, MSCs should adhere to plastic; second, MSCs should express CD105, CD73 and CD90 and should not express CD45, CD34, CD14 or CD11b, CD79a or CD19 and HLA-DR; and finally, MSCs should be able to differentiate into osteoblasts, adipocytes and chondroblasts in vitro. There is also general agreement that MSCs lack CD31 and CD14 expression (Kern et al., 2006) and express the antigens CD44 (Tarnok et al., 2010), CD106 (Pittenger et al., 1999) and CD166 (Mitchell et al., 2006) and other cell adhesion molecules, such as CD13, CD29, CD49f, CD54, CD59, CD63 and CD146 (Deans and Moseley, 2000; Kern et al., 2006). These antigens can be detected by flow cytometry, although this method has not been used to validate most of these molecules in equine MSCs. In addition to flow cytometry, the gene expression of these antigens can be detected quantitatively using reverse transcriptase real-time quantitative PCR (RT-qPCR) (Radcliffe et al., 2010).

Although MSCs derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) seem to be closely related, differences in their biological characteristics have been reported (Im et al., 2005; Puissant et al., 2005). Both AT-MSCs and BM-MSCs share the expression of most surface antigens, but some markers are expressed differentially. For example, in humans, AT-MSCs express CD34, whereas no expression is detected in BM-MSCs; conversely, the expression of the CD106 marker has been found in BM-MSCs but not in AT-MSCs (De Ugarte et al., 2003; Gangenahalli et al., 2006).

Although there are several groups working on the characterisation of adult equine MSCs (Koerner et al., 2006; Vidal et al., 2006, 2007, 2008; Arnhold et al., 2007; Colleoni et al., 2009; Violini et al., 2009), only three recent studies (de Mattos Carvalho et al., 2009; Mambelli et al., 2009; Radcliffe et al., 2010) have reported the analysis of surface antigens by flow cytometry.

The lack of reactivity between commercial monoclonal antibodies and epitopes on equine cells makes it difficult to establish the phenotype of equine MSCs (Taylor et al., 2007) using flow cytometry as the sole technique. However, RT-qPCR allows monitoring of the expression levels of these markers in a limited number of cells, so the combined use of both techniques could facilitate the study of the phenotype of horse MSCs. The purposes of this work are to analyse the phenotype of both BM-MSCs and AT-MSCs with regard to 7 membrane cell surface markers using flow cytometry and also to extend the analysis to 6 more markers by RT-qPCR.

2. Materials and methods

2.1. Animals and cell isolation and expansion

Aspirates from bone marrow of nine horses were harvested using a 4” 11G Jameshdi needle with 2500 UI of sodium heparin. Mononuclear cells were isolated by gradient centrifugation on Lymphoprep (Atom) for 20 min at 1700 rpm. The cells were rinsed twice with PBS (Gibco), counted, and plated at 2 × 10⁶ nucleated cells/cm² in 6-well plates (Becton Dickinson) in growth medium consisting of low glucose Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma-Aldrich) supplemented with 10% Foetal Bovine Serum, 1% Glutamine (Sigma) and 1% Streptomycin/Penicillin.

Samples of subcutaneous adipose tissue from near to the dorsal gluteal muscle below the tail were collected from eight horses. The stromal vascular fraction (SVF) was isolated by digestion with 0.01% collagenase (Type I, Sigma–Aldrich) for 30 min at 37 °C with continuous shaking, followed by centrifugation at 1700 rpm for 5 min. The cells were washed twice with PBS, counted, and seeded in growth medium at 10⁵ nucleated cells/cm² in 6-well plates.

Both mononuclear and SVF cells were washed twice with PBS after 24, 48 and 72 h of incubation at 37 °C at 5% CO₂ and were maintained in growth medium until reaching approximately 80% confluence. The cells were then treated with trypsin (Sigma Aldrich) and plated in T75 or T175 flasks (Becton Dickinson) at 5000 cells/cm². The cells were trypsinised repeatedly until the third passage and then were cryopreserved in FBS with 10% DMSO. Approximately 10⁶ cells from passage three were thawed at 37 °C and plated in a T75 flask for three days to re-adjust prior to being used for the different analyses.

2.2. Differentiation assays

2.2.1. Osteogenic differentiation

Cells were plated at 20,000 cells/cm² in 12-well plates and cultured under osteogenic conditions for 9 days. Differentiation medium consisted of growth medium supplemented with 10 nM dexamethasone, 10 mM β-glycerophosphate and 100 μM ascorbate-2-phosphate. To assess their osteogenic differentiation, cells were fixed in

\[\text{RT-qPCR} \]
70% ethanol for 1 h and stained with 2% alizarin red S (Sigma–Aldrich) for 10 min.

2.2.2. Adipogenic differentiation

Cells were plated at 2500 cells/cm² in 12-well plates and cultured for 14 days with adipogenic medium, consisting of growth medium supplemented with 1 μM dexamethasone, 500 μM IBMX, 200 μM indomethacin and 15% rabbit serum. To examine their adipogenic differentiation, the cells were fixed with 10% formalin (Sigma) for 15 min and stained with 0.3% oil red O for 30 min at 37 °C.

2.2.3. Chondrogenic differentiation

Approximately 500,000 cells were pelleted and placed into 15 mL conical polypropylene tubes with chondrogenic medium, consisting of high glucose DMEM supplemented with 10% FBS, 10 ng/mL TGFβ-3 (R&D Systems), ITS + premix (BD), 40 μg/mL proline (Sigma), 50 μg/mL ascorbate-2-phosphate and 0.1 μM dexamethasone. The culture was maintained for 21 days. To assess the chondrogenic differentiation of these cells, pellets were fixed with 10% formalin, embedded in paraffin and cut into 5 μm sections. Finally, sections were stained with haematoxylin and alcin blue dyes.

2.3. Immunophenotyping

A total of 7 surface markers were analysed by flow cytometry, the mesenchymal cell markers CD29 (Integrin β-1), CD44 (H-CAM), CD73 (ecto-5′-nucleotidase), CD90 (Thy-1) and CD105 (Endoglin), and the haematopoietic markers CD34 and CD45 (LCA).

Cells were suspended in PBS/2 mM EDTA at 10⁶ cells/mL. Fifty microlitre aliquots of cells were transferred to flow cytometry tubes and incubated for 15 min at 4 °C with mouse anti-human CD29-FITC (Caltag Laboratories), CD34-PE (Becton Dickinson), CD44-FITC (Immunostep Research), CD45-APC (Becton Dickinson), CD34-PE (BD Pharmingen), CD90-PE (BD Pharmingen) or CD105-FITC (R&D Systems) monoclonal antibodies. Negative control staining was performed using a FITC-conjugated mouse IgG1 κ isotype, a PE-conjugated mouse IgG1 κ isotype, a PERCP-Cy 5.5-conjugated mouse IgG1 κ isotype and an APC-conjugated mouse IgG1 isotype antibody (all from BD Biosciences). Subsequently, cells were washed with PBS and diluted in 500 μL of PBS/2 mM EDTA.

Before the analysis with the fluorescence-activated cell sorter (FACSARIA, BD Biosciences), 0.5 μL of SYTOX® Blue dead cell stain (Molecular Probes™) was added to the cell dilution to get a 1 μM final concentration of dye. Samples were analysed after 5 min of incubation at room temperature. This staining discriminates between viable and non-viable cells. Living cells were gated in a dot-plot of side scatter signals versus SYTOX staining. At least, 3000 gated events were acquired on a biexponential fluorescence scale. Positive staining for the CD markers was defined as the emission of a fluorescence signal that exceeded levels obtained by >95% of cells from the control population stained with matched isotype antibodies. Dot-plots were generated using the software FACSDIVA 5.0.1 (BD Biosciences).

2.4. Gene expression analysis of cell surface markers

The expression of 13 genes coding for cell surface antigens was analysed by RT-qPCR on both types of equine MSCs. These markers included the 7 molecules analysed by flow cytometry (see above) as well as CD13 (aminopeptidase), CD31 (PECAM), CD49d (α4 integrin), CD106 (VCAM-1), CD146 (MCAM) and CD166 (ALCAM).

2.5. RNA extraction and reverse transcription

Cells were seeded on 24-well plates at 76,000 cells/well for 24 h in triplicate. Afterwards, the cells were washed with PBS and stored at –80 °C. Cell to CDNA II kit (Ambion) was used for total RNA isolation according to the manufacturer’s instructions. Briefly, the cells were thawed at 0 °C, rinsed with ice-cold PBS, and 100 μL of ice-cold Cell Lysis II Buffer was added to each well. Samples were transferred to a 96-well plate and incubated at 75 °C for 15 min. Then 2 μL of DNase I was added, and the reaction was incubated at 37 °C for 15 min and 75 °C for 5 min. Afterwards, the reverse transcriptase master mix reaction, consisting of buffer 10×, dNTPs, random decamers, RNAse inhibitor and M-MLV retrotranscriptase, was added to 10 μL of the samples. Finally, the samples were maintained for 60 min at 42 °C for cDNA synthesis and heated for 10 min at 95 °C.

2.6. Real-time quantitative PCR analysis

The cDNA generated was analysed by real-time PCR. The primers were designed using Primer Express 2.0 software (Applied Biosystems, Foster City, CA, USA). Primer information, accession numbers for equine mRNA sequences and amplicon sizes are shown in Table 1. The amplification reaction was performed in triplicate using the Fast SYBR Green Master Mix (Applied Biosystems, Foster City, CA, USA) and the StepOne™ Real Time PCR System device (Applied Biosystems, Foster City, CA, USA). All of the reactions were performed in a total volume of 10 μL with 2 μL of cDNA as template and 300 nM of forward and reverse primers. Amplification of the cDNA was achieved following the manufacturer’s conditions: an initial activation and denaturation step of 20 s at 95 °C followed by 45 cycles consisting of 3 s at 95 °C and 30 s at 60 °C. A dissociation curve protocol was run after every reaction to identify the presence of spurious PCR bands or high levels of primer dimers. The levels of gene expression were determined by the comparative Ct method. A normalisation factor (NF) calculated protocol was run after every reaction to identify the presence of spurious PCR bands or high levels of primer dimers. The levels of gene expression were determined by the comparative Ct method. A normalisation factor (NF) calculated as the geometric mean of the quantity of two housekeeping genes (GAPDH and B2M) was used to normalise the expression of each gene. The primers, probes and PCR conditions for the amplification of housekeeping genes was described previously (Kolm et al., 2006).

2.7. Statistical analysis

The software SPSS 15.0 was used for the statistical analysis. Data obtained from flow cytometry and RT-qPCR were
analysed for normality with the Shapiro-Wilk test. Differences in gene expression and reactivity levels between BM- and AT-MSCs were determined using the unpaired non-parametric Mann–Whitney test. For both test, \(p < 0.05 \) was considered statistically significant.

3. Results and discussion

3.1. MSC isolation and differentiation

The minimal criteria established to define the human MSCs (Dominici et al., 2006) are: the capacity for attachment to plastic, the expression of certain markers in their cell surface and the ability of differentiation into osteoblast, adipocyte and chondrocyte.

In this study, colonies of fibroblast-like cells were observed in all of the cultures the day following isolation and plating (Fig. 1a). These cells were expanded until reaching passage three, and then they were frozen. The tri-lineage differentiation ability was confirmed in equine MSCs (Fig. 1). Specific Haematoxylin and alcian blue staining of sections obtained from pellets of cells undergoing chondrogenic differentiation showed lacunae formation, which is a typical characteristic of the chondrogenic phenotype; moreover the proteoglycans produced in the extracellular matrix during cartilage differentiation were stained in blue. Calcium deposits formed during osteogenic differentiation were stained in red by alizarin red, whereas control cells did not display any deposit. Finally, oil red O-stained lipid droplets appeared inside of the cells under adipogenic induction while the control cultures did not show any change. Therefore, the equine cells used for further analysis met the minimal criteria concerning the plastic attachment and pluripotency.

3.2. Immunophenotype

Most of the cell surface markers used to sort subpopulations of human mesenchymal stem cells using flow cytometry have not been validated in horses, and there is evidence that some of these markers do not cross-react with horse antigens. In this work, we have analysed 7 surface markers by flow cytometry.

Equine MSCs displayed large size and complexity (Fig. 2a) and a lack of immunoreactivity was observed for the isotype controls for each mouse monoclonal antibody (Fig. 2b–e). Cells negative for SYTOX® staining were then included in the cytometry analysis as viable cells (Fig. 2f). In accordance with the immunophenotype described for human MSCs (De Ugarte et al., 2003; Kern et al., 2006; Liu et al., 2008), our flow cytometry results revealed that horse MSCs derived from the two sources were robustly positive for the typical MSC markers CD29 and CD90 (Fig. 2g and h), with more than 90% of positive cells and no statistically significant differences between cell sources (Fig. 2). Despite using a different antibody, our results confirmed the expression of CD90 by equine AT- and BM-MSCs as reported recently (de Mattos Carvalho et al., 2009; Radcliffe et al., 2010). There are contradictory findings with respect to the CD29 immunophenotype of equine MSCs, the immunoreactivity observed in our work is in agreement with the results obtained for equine BM-MSCs (Radcliffe et al., 2010), but not with those reported previously for equine AT-MSCs (Mambelli et al., 2009). Although we must...
bear in mind that the antibodies used in this and other studies are not specific to the equine species, confirming the immunoreactivity for CD29 and CD90 in different works using different antibodies gives more reliability to these results.

Unfortunately, we could not expand the putative markers set with other antibodies as both BM- and AT-MSCs were negative for CD44, CD73 and CD105 (data not shown). Negative results for CD73 have also been reported in rabbit and sheep, although these species displayed cross-reactivity with anti-human CD44 and CD105 antibodies (Martinez-Lorenzo et al., 2009).

Reactivity against the haematopoietic antigens CD45 and CD34 (Fig. 2h and i), considered negative markers for human MSC (De Ugarte et al., 2003), was not detected for either of the two cell types, which is consistent with the results obtained in other species such as sheep or rabbit (Martinez-Lorenzo et al., 2009). Nevertheless, this result should be interpreted with caution, as the negative reactions for these markers are not truly negative because cross-reactivity between human and horse marker antibodies has not been confirmed. The expression of these antigens could be different between species and between cells with different origins. For example, haematopoietic stem cells (HSCs) from murine bone marrow and from human liver express CD45 but differ in the expression of CD34 and CD133 (Tarnok et al., 2010).

In order to clarify if the absence of immunostaining for the markers analysed was due to dissimilarities in the epitope sites between horse and human, we compared the public protein sequences of these two species using the BLAST tool. Percentages of identities ranged between 69% with a 100% query coverage (QC) for CD34 and 95% with a 97% QC for CD29. The remaining markers displayed the following identity percentages: 72% with 100% QC for CD105, 84% with 77% QC for CD90, 85% with 55% QC for CD44, and 89% with 90% QC for CD73. It was not possible to complete this analysis for CD45 as only a small sequence of the equine marker was found. These BLAST comparisons did not revealed a clear relationship between
identity and immunoreactivity, although we might expect that if homology between human and horse molecules is 100% it is very likely that the anti-human antibody detects the corresponding horse protein, and that the staining pattern of the other antibodies remain questionable as long as no proof of specificity for the horse molecules exists.

3.3. Gene expression of cell surface markers

Because there are few specific markers for equine MSCs and many of the positive stem cell markers described for other species show little or no cross-reactivity with horses (Ibrahim and Steinbach, 2007; Smith, 2008), gene expression-based technologies can help in the identification of other possible molecules described as MSC markers (Rallapalli et al., 2009; Radcliffe et al., 2010). In our study, reverse transcriptase RT-qPCR was performed to quantify the mRNA expression of the cell surface antigen genes analysed by flow cytometry and other 6 molecules considered as positive or negative MSC markers in human.

These markers analysed by flow cytometry in our study are commonly used as markers to define human MSCs (Dominici et al., 2006; Mitchell et al., 2006). In accordance with our cytometry results, equine cells expressed CD29 and CD90 (Fig. 3). Although both AT and BM-MSCs expressed these markers, their mRNA expression was significantly higher in AT-MSCs than in BM-MSCs ($p < 0.05$ and $p < 0.01$, respectively). However, in contrast to the negative results obtained by flow cytometry, the real time PCR study revealed the amplification of CD73, CD105 and CD44 transcripts in both types of cells. Whereas AT and BM-MSCs displayed similar expression levels for CD73 and CD105, CD44 expression was significantly higher in AT-MSC than in BM-MSCs ($p < 0.001$). Therefore, the negative immunophenotyping observed in this work might be due to a lack of cross-reactivity of the antibodies used to the equine antigens rather than to the absence of these antigens in the cell surface. As in human MSCs, CD73, CD105 and CD44 molecules might also be considered as markers to identify equine MSCs.

The expression of the haematopoietic CD34 marker was only observed in AT-MSCs, in contrast with the lack of immunoreactivity detected by flow cytometry but in agreement with human AT-MSC phenotyping (Noel et al., 2008). As the expression of this marker tends to decrease with the number of passages (Mitchell et al., 2006), our expression results indicate that equine AT-MSCs at passage three still express CD34.

Both cell types were negative for the haematopoietic marker CD45, which confirmed the negative result observed in flow cytometry. Therefore, as in humans (De Ugarte et al., 2003; Kern et al., 2006), equine MSCs do not express CD45 in established MSC cultures. Our results confirmed those previously reported (Radcliffe et al., 2010). Similarly, the endothelial marker CD31 was not expressed by equine MSCs in agreement with the findings reported for human MSCs (Noel et al., 2008).

The antigens CD166, CD13, and CD146 are considered positive markers for human MSCs from both origins (De Ugarte et al., 2003), in agreement with this both equine MSC types expressed these genes without significant differences between both cell sources.
Fig. 3. mRNA expression of the CD13, CD29, CD34, CD44, CD49d, CD73, CD90, CD105, CD106, CD146, CD166, CD45 and CD31 cell surface markers. Relative mRNA expression levels are expressed as mean ± s.e. White bars correspond with BM-MSCs (n = 9) and grey bars with AT-MSC (n = 8). *p < 0.05, **p < 0.01, ***p < 0.001.

CD49d and CD106 have been reported as differential markers for human BM- and AT-MSCs (De Ugarte et al., 2003; Kern et al., 2006; Noel et al., 2008). In our real time PCR analysis both cell sources displayed similar transcript levels for these markers. Consequently, neither CD49d nor CD106 would be considered key markers to differentiate MSCs from different sources in the horse, suggesting that the pattern of marker expression established for human MSC may not always be followed by MSCs of other species.

In summary, despite the lack of antibodies that cross-react with horse epitopes to identify markers that allow one to define MSCs by flow cytometry, it is possible to establish a profile of markers through gene expression analysis using RT-qPCR. This technique detects the expression of markers in the cells without the problem of specificity. And it also makes possible to quantify the expression levels between the different types of cells, which cannot be assessed by flow cytometry because this methodology only reflects the percentage of cells expressing antigens without quantifying the intensity of signal. The panel of surface antigens tested revealed a similar phenotypic profile between horse and human MSCs, although specific differences in some surface antigens were noticed. A similar cell surface profile was also observed between BM-MSCs and AT-MSCs, with CD34 emerging as a key molecule to differentiate cells derived from bone marrow and adipose tissue. The present study could help researchers identify these cells more quickly before using them for cellular-based therapies in equine medicine. However, many questions still remain, and further investigation will be necessary to clarify the mechanisms and functions of stem cell epitopes, such as the effect of marker expression variation on the pluripotency of MSCs or the study of their expression by cells from different passages.

Acknowledgements

This work was performed as part of the AGL2008-02428/GAN (MICINN/FEDER) and PAMER Pipamer 09/019 projects and was partially financed by the Gobierno de Aragón (Grupo de Excelencia LAGENBIO) and Instituto Aragonés de Ciencias de la Salud (I+CS). B. Ranera was supported by a doctoral grant from the DGA.

References

Im, G.I., Shin, Y.W., Lee, K.B., 2005. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage 13, 845–853.

Zhang, L., Chan, C., 2010. Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. J. Vis. Exp. 22, 1852.